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a b s t r a c t

The Saint-Venant problems of pure bending and the bending of a cylinder with helical anisotropy by a
transverse force are reduced to boundary-value problems for systems of ordinary differential equations
with variable coefficients. The problems are solved by two methods – the small-parameter method and
numerical methods. The behaviour of the stiffnesses and the stress-strain state is investigated as a function
of the parameters of the problem.

© 2008 Elsevier Ltd. All rights reserved.

The Saint-Venant problems of stretching twisting for a cylinder with helical anisotropy was investigated in Refs. 1–5. Below we con-
sider the case of bending when the principal moment and the principal stress vector in the cross-section are orthogonal to the cylinder
axis.

1. Fundamental relations of the theory of elasticity for a body with helical anisotropy and formulation of the problem

Consider a cylindrical body of length L, which occupies a volume V = S × [0, L], where S is a ring with inner radius r1 and outer radius r2.
We connect the origin of a Cartesian system of coordinates x1, x2, x3 with the geometrical centre of one of the cross-sections of the cylinder.
In addition to the Cartesian system we also introduce a helical system of coordinates r, �, z, connected with the first system by the relations

(1.1)

When r = const and � = const relations (1.1) define a helical curve, the pitch of which h = 2�/�. We will represent the radius vector of points
of the helical curve in the form

Here

We connect a Frenet reference frame with the helical curve; e1, e2 and e3 are the unit vectors of the principal normal, binormal and tangent.
Using the formulae
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where k = �2r/g2 is the curvature of the helical curve, after reduction we obtain an orthogonal transition matrix from basis ej to basis ei
′

As previously,3 we will assume that the material of the cylinder is locally transversely isotropic, the direction of the axis of symmetry of
which is defined by the vector e3. With this assumption, in the basis ei Hooke’s law has the form

where �ij are the components of the stress tensor, �ij are the components of the tensor of small deformations, while the moduli cij, expressed
in terms of the technical constants6 E, E′, G′, �, �′, have the form

(1.2)

Expressions for the moduli cij
′ in the helical system of coordinates were given previously in Ref. 4.

The components of the strain tensor in the basis of the helical system of coordinates are expressed in terms of the displacements ur, u�,
uz by the following formulae

(1.3)

The equilibrium equations in the stresses in this case have the form

(1.4)

Here

We will assume that the side surface of the cylinder is stress-free, i.e.,

Introducing the displacement vector u = (ur, u�, uz)T, we can represent the problem in the following vector-operator form

(1.5)

(1.6)

Here Ak and Bi are matrix differential operators in the variables r and �, and the values of the indices k = 0, 1, 2 and i = 0, 1 indicate the
order of these operators; we will not give their specific form here in view of their complexity and since the method of constructing them
is obvious. We will merely note that the coefficients of these operators depend on r and �, but are independent of z, which enables us to
seek the solution in the form

As a result, we obtain an eigenvalue problem in the section z = const

(1.7)
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It is known from the general theory of quadratic beams of symmetrical operators,7 that the spectrum of the operator M1(�) is discrete, has
a point of condensation at infinity and is situated symmetrically in the complex plane � = 	 + i
, i.e., for any eigenvalue

when 	 /= 0 there are three more eigenvalues

It was shown in Refs. 1–4 that �0 = 0, �±
1 = ±i� are four-fold eigenvalues and, apart from �±

1 , there are no other pure imaginary eigenvalues.
Hence, in a general representation, the solutions of problem (1.7) are

where uS is the Saint-Venant solution, corresponding to the eigenvalues and, uP is the solution corresponding to the remaining part of the
spectrum and has the form

where C±
k

are arbitrary constants. The solution uS covers the whole region, and the solution uP is localized in the region of the ends of the
cylinder z = 0, L and decreases exponentially with distance from them. The rate of decrease is determined by the parameter 	* = inf(	k), the
value of which depends on the degree of anisotropy. The ratio E/E′ can serve, in particular, as the characteristic of the degree of anisotropy
of an orthotropic material, which, in composite fibre materials with a soft filling, may be considerably less than unity, which means that 	*
is small. It must be emphasised that the stress-strain state for the Saint-Venant solution in any cross-section z = const is equivalent in an
integral sense to the stress-strain state corresponding to the principal vector and the principal moment of the external forces, applied to
one of the ends of the cylinder. The principal vector and the principal moment of the stresses, corresponding to any vector function u±

k
(z),

are equal to zero.4

2. Elementary solutions of Saint-Venant bending problems

The solution of Saint-Venant bending problems3,4 is a linear combination of the elementary solutions corresponding to the eigenvalues
�±

1 = ±i� and can be represented in the form

(2.1)

Here Cl are arbitrary constants, which are determined when the boundary conditions on the ends of the cylinder are satisfied. Note that the
stress-strain state, corresponding to the first two elementary solutions, are identically equal to zero, since u0

x1
= 2Re(C1) and u0

x2
= −2Im(C1)

are the displacements and ωx1 = 2Im(C2), ωx2 = Re(C2) are small angles of rotation of the cylinder as a rigid body; the stress-strain state
corresponding to Re(C3u3) and Im(C3u3), is equivalent, in the integral sense, to the stress-strain state corresponding solely to the bending
moments Mx1 , −Mx2 ; the stress-strain state corresponding to Re(C4u4) and Im(C4u4) is equivalent to the stress-strain state corresponding
to the transverse forces Qx1 , −Qx2 and the bending moments.

We will introduce the stress vector � = (�1, . . ., �6)T. The stress vectors corresponding to the elementary solutions as(s = 3, 4), can be
represented in the form

(2.2)

It follows from Eqs. (1.4) that the components of the vectors bs satisfy the following equations and boundary conditions

(2.3)

(2.4)
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where �s4 is the Kronecker delta, and the superscipt dot denotes a derivative with respect to r. On the other hand, using the relations of
the generalized Hooke’s law and the Saint-Venant solutions (2.1) we have

(2.5)

Relations (2.2)–(2.5) lead to the integration of a system of three second-order ordinary differential equations with variable coefficients with
respect to the functions ar,s, a�,s, az,s. This form of writing the boundary-value problems is convenient when investigating their solutions
by analytical methods, for example, by the small-parameter method. For numerical integration it is more convenient to write the initial
boundary-value problems in the form of Cauchy problems for a system of six first-order ordinary differential equations. To construct this
system we introduce the six-coordinate vectors

where

The initial system of three second-order ordinary differential equations can now be written in the form

(2.6)

The non-zero elements of the matrix A and the coefficients of the vectors qs have the form

Here
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3. Methods of constructing elementary solutions and some results of a numerical analysis

It is only possible to integrate Eqs. (2.6) for arbitrary values of the parameter � by numerical methods. However, for small values of
the dimensionless parameter �0 = �r2 we can construct approximate analytical solutions by the small-parameter method. These solutions
enable us, on the one hand, to obtain a clear representation of the effect of different parameters of the problems on their solution, and on
the other hand, they can be used as tests for the numerical integration.

We will first construct analytical solutions by the small-parameter method. We will only outline its scheme here since it is described in
detail in Ref. 4 when constructing solutions of tension torsion problems.

For small �0 we will seek a solution in the form

(3.1)

After some reduction we obtainfor s = 3

for s = 4

Here

For a numerical integration of boundary-value problems (2.6) and (2.4), the solutions will be sought in the form

where y0
s , yp

s are the solutions of the following Cauchy problems

and, in order for the solutions to satisfy the boundary conditions when r = r2, the constants Xp must be found from the conditions

(3.2)

Remark. The following first integral is obtained from the first two equations of (2.3)



486 N.M. Romanova, Yu.A. Ustinov / Journal of Applied Mathematics and Mechanics 72 (2008) 481–488

It follows, in turn, from this relation that the rank of the matrix of algebraic system (3.2) is equal to 2, and it turns out that the rank of the
augmented matrix is also equal to 2. This gives rise to some inconvenience in the numerical integration, which is easily overcome.

As an example, consider the boundary-value problem with the following boundary conditions on the ends of the cylinder

(3.3)

(3.4)

We will assume that the vector of the external forces pr, p�, pz is equivalent, in the integral sense, to the transverse forces Qx1 , Qx2 and the
bending moments M∗

x1
, M∗

x2
. The following relations are obtained from these assumptions

(3.5)

After calculating �rz, ��z, �zz, corresponding to solution (2.1), using relations (2.2), substituting them into conditions (3.4) and subsequent
integration, we obtain, taking the relations of generalized orthogonality4 into account,

(3.6)

where d and d′ are the elements of the stiffness matrix4 and d = �E′(r4
2 − r4

1)/2, d′ = 0 when � = 0.
We emphasise that, using Eqs. (3.6), the constants C3 and C4 can be determined “exactly”, but the constants C1 and C2 can only be

determined “exactly” using the solution of an infinite system of algebraic equations. A method of constructing one of the versions of this
system was given earlier in Refs. 4 and 8. An asymptotic analysis of such systems shows that C1 and C2 are of the order of r2/L, and hence
we can put C1 = C2 = 0.

We have the following formulae for the displacements and stresses in the case of pure bending

If we put r = 0 in the formulae for the displacements and take into account the fact that, for a continuous cylinder ar,3 = a�,3 = az,3 = 0 on its
axis, we obtain the classical equations of the curved axis of a rod
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In the case of bending by transverse forces we have

We have the following equivalence relations for n

The equations of the curved axis in this case have the form

(3.7)

When 	 = 0, 	 = �/2 (	 = arctg�0), i.e., when helical anisotropy degenerates into cylindrical anisotropy, L′ = L.

Fig. 1.
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Fig. 2.

In conclusion we will present some results of a numerical analysis of the problem. All the calculations were carried out for a cylinder
made of composite material, the average elastic characteristics of which have the following values in a Frenet basis

The moduli cij
′ were calculated using well-known formulae.

By numerical integration we obtained the following dependences of the normalized elements of the stiffness matrix

on the parameter 	 = arctg�0 for different values of the parameter a = r1/r2 (Fig. 1).
In Fig. 2 we show graphs of bzz, 3, bzz, 4 and brz, 4, b�z, 4, corresponding to 	 = �/6, which illustrate the distribution of the normal stresses

�zz and the torsional stresses �rz, ��z respectively over the cross-section.
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